Cross-sectional relationship between chronic stress and mineral concentrations in hair of elementary school girls

Biol Trace Elem Res. 2013 Jun;153(1-3):41-9. doi: 10.1007/s12011-013-9647-2. Epub 2013 Apr 2.

Abstract

Chronic stress exposure is associated with diverse negative health outcomes. It has been hypothesised that stress may also negatively affect the body's mineral status. This study investigates the association between chronic stress and long-term mineral concentrations of calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), phosphorus (P) and zinc (Zn) in scalp hair among elementary school girls. Complete information on child-reported stress estimates (Coddington Life Events Scale (CLES)), hair cortisone and hair mineral concentrations, and predefined confounders in the stress-mineral relationship (i.e. age, body mass index, physical activity, diet, hair colour and parental education) was provided cross-sectionally for 140 girls (5-10 years old). The relationship between childhood stress measures (predictor) and hair minerals (outcome) was studied using linear regression analysis, adjusted for the abovementioned confounders. Hair cortisone concentrations were inversely associated with hair mineral concentrations of Ca, Mg, Zn and the Ca/P ratio. Children at risk by life events (CLES) presented an elevated Ca/Mg ratio. These findings were persistent after adjustment for confounders. This study demonstrated an independent association between chronic stress measures and hair mineral levels in young girls, indicating the importance of physiological stress-mineral pathways independently from individual or behavioural factors. Findings need to be confirmed in a more heterogeneous population and on longitudinal basis. The precise mechanisms by which stress alters hair mineral levels should be further elucidated.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Child
  • Child, Preschool
  • Cortisone / analysis
  • Cross-Sectional Studies
  • Female
  • Hair / chemistry*
  • Humans
  • Minerals / analysis*
  • Stress, Psychological*

Substances

  • Minerals
  • Cortisone