Dosimetric and geometric evaluation of a novel stereotactic radiotherapy device for breast cancer: the GammaPod™

Med Phys. 2013 Apr;40(4):041722. doi: 10.1118/1.4794477.

Abstract

Purpose: A dedicated stereotactic gamma irradiation device, the GammaPod™ from Xcision Medical Systems, was developed specifically to treat small breast cancers. This study presents the first evaluation of dosimetric and geometric characteristics from the initial prototype installed at University of Maryland Radiation Oncology Department.

Methods: The GammaPod™ stereotactic radiotherapy device is an assembly of a hemi-spherical source carrier containing 36 (60)Co sources, a tungsten collimator, a dynamically controlled patient support table, and the breast immobilization system which also functions as a stereotactic frame. The source carrier contains the sources in six columns spaced longitudinally at 60° intervals and it rotates together with the variable-size collimator to form 36 noncoplanar, concentric arcs focused at the isocenter. The patient support table enables motion in three dimensions to position the patient tumor at the focal point of the irradiation. The table moves continuously in three cardinal dimensions during treatment to provide dynamic shaping of the dose distribution. The breast is immobilized using a breast cup applying a small negative pressure, where the immobilization cup is embedded with fiducials also functioning as the stereotactic frame for the breast. Geometric and dosimetric evaluations of the system as well as a protocol for absorbed dose calibration are provided. Dosimetric verifications of dynamically delivered patient plans are performed for seven patients using radiochromic films in hypothetical preop, postop, and target-in-target treatment scenarios.

Results: Loaded with 36 (60)Co sources with cumulative activity of 4320 Ci, the prototype GammaPod™ unit delivers 5.31 Gy/min at the isocenter using the largest 2.5 cm diameter collimator. Due to the noncoplanar beam arrangement and dynamic dose shaping features, the GammaPod™ device is found to deliver uniform doses to targets with good conformity. The spatial accuracy of the device to locate the radiation isocenter is determined to be less than 1 mm. Single shot profiles with 2.5 cm collimator are measured with radiochromic film and found to be in good agreement with respect to the Monte Carlo based calculations (congruence of FWHM less than 1 mm). Dosimetric verifications corresponding to all hypothetical treatment plans corresponding to three target scenarios for each of the seven patients demonstrated good agreement with gamma index pass rates of better than 97% (99.0% ± 0.7%).

Conclusions: Dosimetric evaluation of the first GammaPod™ stereotactic breast radiotherapy unit was performed and the dosimetric and spatial accuracy of this novel technology is found to be feasible with respect to clinical radiotherapy standards. The observed level of agreement between the treatment planning system calculations and dosimetric measurements has confirmed that the system can deliver highly complex treatment plans with remarkable geometric and dosimetric accuracy.

MeSH terms

  • Breast Neoplasms / surgery*
  • Dose Fractionation, Radiation
  • Equipment Design
  • Equipment Failure Analysis
  • Humans
  • Organ Sparing Treatments / instrumentation*
  • Radiometry / methods*
  • Radiosurgery / instrumentation*
  • Radiosurgery / methods
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity