This paper proposes a methodology to design a physiologically realistic computer simulator of images of the left ventricle myocardium based on a patient-specific biomechanical model. The simulator takes a magnetic resonance image of a given patient at end diastole, uses a manual segmentation of that image to model the geometry of the myocardium and sets the parameters of the constitutive model used for biomechanical simulation according to a regional labeling of the contractility of the myocardium for that patient. The simulated deformations are used to warp the magnetic resonance dataset throughout the cardiac cycle to generate different image modalities. The simulator is validated by quantifying its ability to model actual deformations in a set of patients affected by an acute myocardial infarction. Specifically a high correlation has been encountered between the ejection fraction derived from the simulated end systolic deformation of the myocardium and the myocardium segmented from actual data. Additionally, most of the parameters that describe the simulated deformation compare well with reported values. Overall, the simulator is intended as a testbed for extensive comparisons of myocardial motion tracking methods due to its ability to relate the impaired myocardial function with the associated ventricular remodeling, a novel contribution in the literature of cardiac image simulators.
Keywords: Biomechanics; Cardiac simulator; Motion estimation; Phase-contrast magnetic resonance; Tagged magnetic resonance.
Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.