A transcription fork model for Pol IV and Pol V-dependent RNA-directed DNA methylation

Cold Spring Harb Symp Quant Biol. 2012:77:205-12. doi: 10.1101/sqb.2013.77.014803. Epub 2013 Apr 8.

Abstract

In Arabidopsis thaliana, nuclear multisubunit RNA polymerase IV (Pol IV) and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) are required for the biogenesis of 24-nucleotide small interfering RNAs (siRNAs) that direct DNA methylation and transcriptional silencing at target loci transcribed by nuclear multisubunit RNA polymerase V (Pol V). Pol IV and RDR2 physically associate and RDR2's polymerase activity in vitro is dependent on Pol IV. RDR2 transcription of nascent Pol IV transcripts might result in discontinuous second strands, analogous to lagging-strand Okazaki fragments generated during DNA replication. In vitro, Pol V is unable to displace nontemplate DNA during transcriptional elongation. This suggests a need for DNA duplex unwinding by helper proteins, perhaps analogous to the helicase-mediated duplex unwinding that occurs at replication forks to enable leading strand synthesis by DNA polymerase ε. A multiprotein complex (DRD1, DMS3, DMS11, RDM1) known to enable Pol V transcription might facilitate duplex unwinding via ATP-dependent DNA translocase, single-stranded DNA binding, and cohesin-like strand capture activities. These considerations are discussed and incorporated into a "transcription fork" model for Pol IV and Pol V-dependent RNA-directed DNA methylation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA Methylation / genetics*
  • DNA-Directed RNA Polymerases / metabolism*
  • Models, Genetic*
  • Protein Transport
  • RNA, Plant / metabolism*
  • Transcription, Genetic*

Substances

  • RNA, Plant
  • DNA-Directed RNA Polymerases