The Dominant Control Region (DCR) of the human beta-globin gene locus consists of four strong hypersensitive sites (HSS) upstream of the epsilon-globin gene. Addition of these sites confers copy number dependent expression on the human beta-globin gene in murine erythroleukaemia cells and transgenic mice, at levels comparable with the endogenous mouse globin genes. We have shown previously that a 1.9 kb fragment comprising HSS 2 accounts for 40-50% of the full effect of the DCR. In this paper we describe a deletional analysis of HSS 2. We show that a 225 bp fragment is sufficient to direct high levels of expression of the human beta-globin gene which is copy number dependent and integration site independent. This 225 bp fragment overlaps the major region that is hypersensitive 'in vivo'. DNase I footprinting shows the presence of four binding sites for the erythroid specific protein NF-E1; the three other footprinted regions display a remarkable redundancy of the sequence GGTGG and bind a number of proteins including Sp1 and the CACC box protein. The significance of these results for the regulation of globin gene expression is discussed.