We project onto the light front the pion's Poincaré-covariant Bethe-Salpeter wave function obtained using two different approximations to the kernels of quantum chromodynamics' Dyson-Schwinger equations. At an hadronic scale, both computed results are concave and significantly broader than the asymptotic distribution amplitude, φ(π)(asy)(x)=6x(1-x); e.g., the integral of φ(π)(x)/φ(π)(asy)(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral-symmetry breaking is responsible for hardening the amplitude.