Autoimmune haemolytic anaemia (AIHA) is caused by autoantibodies against red blood cell (RBC) surface antigens that render RBC susceptible to Fc-mediated phagocytosis and complement-mediated lysis. Experimental AIHA can be induced by injection of rat RBC to naive mice, but a lymphocyte-mediated regulatory mechanism eventually suppresses the production of autoantibodies specific for mouse RBC. Critically, this tolerogenic response can be transferred to naive mice by splenocytes from the rat RBC-immunized mouse. Here we investigate whether indoleamine 2,3 dioxygenase (IDO) or the initiators of IDO cascade, including the cytotoxic T lymphocyte antigen (CTLA)-4 receptor and its soluble isoform, contribute to this tolerogenic mechanism. Splenocytes from experimental AIHA mice were transferred adoptively to naive mice under the cover of anti-CTLA-4, anti-soluble CTLA-4 antibodies or IDO inhibitor 1-methyl tryptophan (1-MT). Recipient mice were immunized with rat RBC and levels of antibody against self-RBC and rat-RBC were monitored. Our results indicate that transfer of tolerance to naive recipients is dependent upon IDO-mediated immunosuppression, as mice receiving previously tolerized splenocytes under the cover of 1-MT were refractory to tolerance and developed haemolytic disease upon further challenge with rat RBC. Initiators of IDO activity, CTLA-4 or soluble CTLA-4 did not mediate this tolerogenic process but, on their blockade, boosted antigen-specific effector immune responses.
© 2013 British Society for Immunology.