Purpose: The goal was to identify molecular imaging probes that would enter the brain, selectively bind to Parkinson's disease (PD) pathology, and be detectable with one or more imaging modalities.
Procedure: A library of organic compounds was screened for the ability to bind hallmark pathology in human Parkinson's and Alzheimer's disease tissue, alpha-synuclein oligomers and inclusions in two cell culture models, and alpha-synuclein aggregates in cortical neurons of a transgenic mouse model. Finally, compounds were tested for blood-brain barrier permeability using intravital microscopy.
Results: Several lead compounds were identified that bound the human PD pathology, and some showed selectivity over Alzheimer's pathology. The cell culture models and transgenic mouse models that exhibit alpha-synuclein aggregation did not prove predictive for ligand binding. The compounds had favorable physicochemical properties, and several were brain permeable.
Conclusions: Future experiments will focus on more extensive evaluation of the lead compounds as PET ligands for clinical imaging of PD pathology.