Loss-of-function mutations in SOX10 cause Kallmann syndrome with deafness

Am J Hum Genet. 2013 May 2;92(5):707-24. doi: 10.1016/j.ajhg.2013.03.024.

Abstract

Transcription factor SOX10 plays a role in the maintenance of progenitor cell multipotency, lineage specification, and cell differentiation and is a major actor in the development of the neural crest. It has been implicated in Waardenburg syndrome (WS), a rare disorder characterized by the association between pigmentation abnormalities and deafness, but SOX10 mutations cause a variable phenotype that spreads over the initial limits of the syndrome definition. On the basis of recent findings of olfactory-bulb agenesis in WS individuals, we suspected SOX10 was also involved in Kallmann syndrome (KS). KS is defined by the association between anosmia and hypogonadotropic hypogonadism due to incomplete migration of neuroendocrine gonadotropin-releasing hormone (GnRH) cells along the olfactory, vomeronasal, and terminal nerves. Mutations in any of the nine genes identified to date account for only 30% of the KS cases. KS can be either isolated or associated with a variety of other symptoms, including deafness. This study reports SOX10 loss-of-function mutations in approximately one-third of KS individuals with deafness, indicating a substantial involvement in this clinical condition. Study of SOX10-null mutant mice revealed a developmental role of SOX10 in a subpopulation of glial cells called olfactory ensheathing cells. These mice indeed showed an almost complete absence of these cells along the olfactory nerve pathway, as well as defasciculation and misrouting of the nerve fibers, impaired migration of GnRH cells, and disorganization of the olfactory nerve layer of the olfactory bulbs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • DNA Mutational Analysis
  • Deafness / genetics*
  • Deafness / pathology
  • Female
  • France
  • Galactosides
  • Genetic Predisposition to Disease / genetics*
  • HeLa Cells
  • Humans
  • Indoles
  • Kallmann Syndrome / genetics*
  • Kallmann Syndrome / pathology
  • Male
  • Mice
  • Mutation / genetics
  • Neuroglia / pathology*
  • Olfactory Pathways / pathology*
  • Plasmids / genetics
  • SOXE Transcription Factors / genetics*

Substances

  • Galactosides
  • Indoles
  • SOX10 protein, human
  • SOXE Transcription Factors
  • 5-bromo-4-chloro-3-indolyl beta-galactoside