Meta-analysis of genome-wide association studies (GWASs) has become a popular method for discovering genetic risk variants. Here, we overview both widely applied and newer statistical methods for GWAS meta-analysis, including issues of interpretation and assessment of sources of heterogeneity. We also discuss extensions of these meta-analysis methods to complex data. Where possible, we provide guidelines for researchers who are planning to use these methods. Furthermore, we address special issues that may arise for meta-analysis of sequencing data and rare variants. Finally, we discuss challenges and solutions surrounding the goals of making meta-analysis data publicly available and building powerful consortia.