A tunable dual-band ferrite-based metamaterial has been investigated by experiments and simulations. The negative permeability is realized around the ferromagnetic resonance (FMR) frequency which can be influenced by the dimension of the ferrites. Due to having two negative permeability frequency regions around the two FMR frequencies, the metamaterials consisting of metallic wires and ferrite rods with different sizes possess two passbands in the transmission spectra. The microwave transmission properties of the ferrite-based metamaterials can be not only tuned by the applied magnetic field, but also adjusted by the dimension of the ferrite rods. A good agreement between experimental and simulated results is demonstrated, which confirms that the tunable dual-band ferrite-based metamaterials can be used for cloaks, antennas and absorbers.