The Age-Related Eye Diseases Study 2 (AREDS2) clinical trial is assessing the effects of higher dietary xanthophyll (lutein and zeaxanthin) and long-chain n3 polyunsaturated fatty acid (LCPUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) intake on progression to advanced age-related macular degeneration (AMD). This study's purpose was to examine the retinal effects of the AREDS2 formulation on Chemokine (C-C motif) ligand 2 (Ccl2(-/-))/CX3C chemokine receptor 1 (Cx3cr1(-/-)) mice on Crumbs homolog 1 retinal degeneration phenotype 8 (Crb1(rd8)) background (DKO), which develop focal retinal lesions with certain features similar to AMD. DKO and C57BL/6N rd8 background mice (WT) were bred and randomized into 4 groups. Two groups, WT mice on AREDS2 diet (A-WT) and DKO mice on AREDS2 diet (A-DKO), were supplemented daily with 1.76 μmol of lutein, 35.1 μmol of zeaxanthin, 215 μmol EPA, and 107 μmol of DHA, and 2 control groups, WT mice on control diet (C-WT) and DKO mice on control diet (C-DKO), were fed an isocaloric diet. All mice had monthly fundus photos and were killed after 3 mo for biochemical and histologic analyses. After 3 mo, 81% of A-DKO mice had lesion regression compared with 25% of C-DKO mice (P < 0.05). Toxic retinal 2-[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetra-enyl]-1-(2-hydroxyethyl)-4-[4-methyl-6(2,6,6-trimethyl-1-cyclohexen-1-yl) 1E,3E,5E,7E-hexatrienyl]-pyridinium (A2E) concentrations were significantly lower in A-DKO compared with C-DKO mice. The outer nuclear layer thickness in A-DKO mice was significantly greater than that in C-DKO mice. Retinal expression of inducible nitric oxide synthase (iNos) tumor necrosis factor-α (Tnf-α), Cyclooxygenase-2 (Cox-2), interleukin1beta (IL-1β), and vascular endothelial growth factor (Vegf) was significantly lower in A-DKO compared with C-DKO mice. Xanthophylls and LCPUFAs have antiinflammatory, neuroprotective, and antiangiogenic properties. Our data provide potential mechanisms by which the AREDS2 formula has a protective effect on retinal lesions in DKO mice.