Many faces of DAMPs in cancer therapy

Cell Death Dis. 2013 May 16;4(5):e631. doi: 10.1038/cddis.2013.156.

Abstract

A new concept of immunogenic cell death (ICD) has recently been proposed. The immunogenic characteristics of this cell death mode are mediated mainly by molecules called 'damage-associated molecular patterns' (DAMPs), most of which are recognized by pattern recognition receptors. Some DAMPs are actively emitted by cells undergoing ICD (e.g. calreticulin (CRT) and adenosine triphosphate (ATP)), whereas others are emitted passively (e.g. high-mobility group box 1 protein (HMGB1)). Recent studies have demonstrated that these DAMPs play a beneficial role in anti-cancer therapy by interacting with the immune system. The molecular pathways involved in translocation of CRT to the cell surface and secretion of ATP from tumor cells undergoing ICD are being elucidated. However, it has also been shown that the same DAMPs could contribute to progression of cancer and promote resistance to anticancer treatments. In this review, we will critically evaluate the beneficial and detrimental roles of DAMPs in cancer therapy, focusing mainly on CRT, ATP and HMGB1.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Antineoplastic Agents / therapeutic use
  • Apoptosis
  • Calreticulin / metabolism
  • Cell Membrane / metabolism
  • HMGB1 Protein / metabolism
  • Humans
  • Neoplasms / drug therapy
  • Neoplasms / metabolism*
  • Neoplasms / pathology
  • T-Lymphocytes, Cytotoxic / immunology

Substances

  • Antineoplastic Agents
  • Calreticulin
  • HMGB1 Protein
  • Adenosine Triphosphate