Background: Targeted mutation site-specific differences have correlated C-loop missense mutations with worse outcomes and increased benefit of beta-blockers in LQT1. This observation has implicated the C-loop region as being mechanistically important in the altered response to sympathetic stimulation known to put patients with LQT1 at risk of syncope and sudden cardiac death.
Objective: The objective of this study was to determine if there is mutation site-specific response to sympathetic stimulation and beta-blockers using exercise testing.
Methods: This study is a retrospective review of LQT1 patients undergoing exercise testing at 3 academic referral centers.
Results: A total of 123 patients (age 28 ± 17 years, 59 male) were studied including 34 patients (28%) with C-loop mutations. There were no significant differences in supine, standing, peak exercise and 1-minute recovery QTc duration between patients with C-loop mutations and patients with alternate mutation sites. In 37 patients that underwent testing on and off beta-blockers, beta-blocker use was associated with a significant reduction in supine, standing and peak exercise QTc. This difference was not seen in the small group of patients (7/37) with C-loop mutations. There was no difference in QTc at 1 and 4 minutes into recovery.
Conclusions: Genetically confirmed LQT1 patients in this study cohort with C-loop mutations did not demonstrate the expected increase in QTc in response to exercise, or resultant response to beta-blocker. The apparent increased risk of cardiac events associated with C-loop mutation sites and the marked benefit received from beta-blocker therapy are not reflected by exercise-mediated effects on QTc in this study population.
Keywords: LQT1; diagnosis; exercise; genetics; genotype; long-QT syndrome; phenotype.
© 2013 Wiley Periodicals, Inc.