Only select cell types in an organ display neoplasia when targeted oncogenically. How developmental lineage hierarchies of these cells prefigure their neoplastic propensities is not yet well-understood. Here we show that neoplastic Drosophila epithelial cells reverse their developmental commitments and switch to primitive cell states. In a context of alleviated tissue surveillance, for example, loss of Lethal giant larvae (Lgl) tumor suppressor in the wing primordium induced epithelial neoplasia in its Homothorax (Hth)-expressing proximal domain. Transcriptional profile of proximally transformed mosaic wing epithelium and functional tests revealed tumor cooperation by multiple signaling pathways. In contrast, lgl(-) clones in the Vestigial (Vg)-expressing distal wing epithelium were eliminated by cell death. Distal lgl(-) clones, however, could transform when both tissue surveillance and cell death were compromised genetically and, alternatively, when the transcription cofactor of Hippo signaling pathway, Yorkie (Yki), was activated, or when Ras/EGFR signaling was up-regulated. Furthermore, transforming distal lgl(-) clones displayed loss of Vg, suggesting reversal of their terminal cell fate commitment. In contrast, reinforcing a distal (wing) cell fate commitment in lgl(-) clones by gaining Vg arrested their neoplasia and induced cell death. We also show that neoplasia in both distal and proximal lgl(-) clones could progress in the absence of Hth, revealing Hth-independent wing epithelial neoplasia. Likewise, neoplasia in the eye primordium resulted in loss of Elav, a retinal cell marker; these, however, switched to an Hth-dependent primitive cell state. These results suggest a general characteristic of "cells-of-origin" in epithelial cancers, namely their propensity for switch to primitive cell states.