Cell membranes provide unique local environments for biological reactions, where the diffusion of biomolecules as well as water molecules plays critical roles. Translational and rotational motions of water molecules near membranes are known to be slower than those in bulk. Using all-atom molecular dynamics simulations of a membrane, we show that the temperature dependence of the water molecular motions on the membrane surface is different from that in bulk. Decreasing temperature enhances the water retardation on the membrane surface, and the lateral motions of water molecules are correlated with the vertical motions. We find that trapping times of water molecules onto membrane surfaces are distributed according to a power-law distribution and that the power-law exponents depend linearly on temperature, suggesting a random energy landscape picture. Moreover, we find that water molecules on the membrane surfaces exhibit subdiffusions in translational motions.