Stable binding of alternative protein-enriched food matrices with concentrated cranberry bioflavonoids for functional food applications

J Agric Food Chem. 2013 Jul 17;61(28):6856-64. doi: 10.1021/jf401627m. Epub 2013 Jul 1.

Abstract

Defatted soy flour (DSF), soy protein isolate (SPI), hemp protein isolate (HPI), medium-roast peanut flour (MPF), and pea protein isolate (PPI) stably bind and concentrate cranberry (CB) polyphenols, creating protein/polyphenol-enriched matrices. Proanthocyanidins (PAC) in the enriched matrices ranged from 20.75 mg/g (CB-HPI) to 10.68 mg/g (CB-SPI). Anthocyanins (ANC) ranged from 3.19 mg/g (CB-DSF) to 1.68 mg/g (CB-SPI), whereas total phenolics (TP) ranged from 37.61 mg/g (CB-HPI) to 21.29 mg/g (CB-SPI). LC-MS indicated that the enriched matrices contained all identifiable ANC, PAC, and flavonols present in CB juice. Complexation with SPI stabilized and preserved the integrity of the CB polyphenolic components for at least 15 weeks at 37 °C. PAC isolated from enriched matrices demonstrated comparable antiadhesion bioactivity to PAC isolated directly from CB juice (MIC 0.4-0.16 mg/mL), indicating their potential utility for maintenance of urinary tract health. Approximately 1.0 g of polyphenol-enriched matrix delivered the same amount of PAC available in 1 cup (300 mL) of commercial CB juice cocktail, which has been shown clinically to be the prophylactic dose for reducing recurring urinary tract infections. CB-SPI inhibited Gram-positive and Gram-negative bacterial growth. Nutritional and sensory analyses indicated that the targeted CB-matrix combinations have high potential for incorporation in functional food formulations.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Anthocyanins / analysis
  • Anti-Bacterial Agents / administration & dosage
  • Arachis / chemistry
  • Beverages / analysis
  • Cannabis / chemistry
  • Dietary Proteins / metabolism*
  • Flavonoids / metabolism*
  • Food, Fortified*
  • Fruit / chemistry
  • Functional Food*
  • Plant Proteins / metabolism*
  • Polyphenols / metabolism
  • Proanthocyanidins / analysis
  • Soybean Proteins / metabolism
  • Urinary Tract Infections / prevention & control
  • Vaccinium macrocarpon / chemistry*

Substances

  • Anthocyanins
  • Anti-Bacterial Agents
  • Dietary Proteins
  • Flavonoids
  • Plant Proteins
  • Polyphenols
  • Proanthocyanidins
  • Soybean Proteins