This study was aimed to investigate the expression level of SHP-1 and C-kit genes in acute leukemia HL-60 cells and effect of inhibitor As2O3 demethylation on SHP-1 and C-kit genes expression. RT-PCR was used to detect the expression level of SHP-1 and C-kit mRNA in drug-treated cell group and control group. The methylation specific PCR (MSP) was applied to measure the methylation status of SHP-1 gene in HL-60 cells. The results showed that after being treated with As2O3 the recovery of SHP-1 gene expression was observed in HL-60 cells in which SHP-1 mRNA originally did not expressed, meanwhile the expression level of C-kit mRNA in HL-60 cells with high expression decreased. When HL-60 cells were treated with As2O3 of 1.0, 2.5, 5.0 µmol/L, the demethylation effects was enhanced, the expression of SHP-1 mRNA displayed an ascending tendency, and expression of C-kit mRNA showed an descending tendency in dose-dependent manner (P < 0.05). It is concluded that the absence of SHP-1 mRNA expression in HL-60 cells and recovery of expression after treatment with As2O3 suggest the hypermethylation of SHP-1 gene related with pathogenesis of leukemia, and the abnormal increase of C-kit mRNA expression maybe exist in formation of leukemia. The effect of As2O3 on expression of SHP-1 and C-kit shows dose-dependency, the higher the As2O3 concentration, the higher the SHP-1 expression and the lower the C-kit expression, moreover, the effect of As2O3 shows time-dependency in specific concentration. The SHP-1 mRNA expression negatively relates with C-kit mRNA expression, suggesting that the decrease or absence of SHP-1 expression in leukemia cells weakens the negative regulation on C-kit signaling pathway, thus plays a role in the formation of leukemia.