1-Deoxy-D-xylulose 5-phosphate (DXP) synthase catalyzes the first step in the nonmammalian isoprenoid biosynthetic pathway to form DXP from pyruvate and D-glyceraldehyde 3-phosphate (D-GAP) in a thiamin diphosphate-dependent manner. Its unique structure and mechanism distinguish DXP synthase from its homologues and suggest that it should be pursued as an anti-infective drug target. However, few reports describe any development of selective inhibitors of this enzyme. Here, we reveal that DXP synthase catalyzes C-N bond formation and exploit aromatic nitroso substrates as active site probes. Substrate specificity studies reveal a high affinity of DXP synthase for aromatic nitroso substrates compared to the related ThDP-dependent enzyme pyruvate dehydrogenase (PDH). Results from inhibition and mutagenesis studies indicate that nitroso substrates bind to E. coli DXP synthase in a manner distinct from that of D-GAP. Our results suggest that the incorporation of aryl acceptor substrate mimics into unnatural bisubstrate analogues will impart selectivity to DXP synthase inhibitors. As a proof of concept, we show selective inhibition of DXP synthase by benzylacetylphosphonate (BnAP).
Keywords: DXP synthase; biosynthesis; enzyme inhibitors; isoprenoids; kinetics; substrate specificity.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.