Ghrelin is an important gastrointestinal hormone involved in the regulation of feeding in both mammals and fish. In this study, the preproghrelin cDNA sequence was cloning in the gut of Schizothorax prenanti (S. prenanti). The preproghrelin gene, encoding 103-amino acids, was strongly expressed in the gut and brain using real-time quantitative RT-PCR (qPCR). The S. prenanti preproghrelin was detected in embryonic developmental stages. Further, it was detectable in unfertilized eggs, suggesting that ghrelin could be classified as maternal mRNA. An experiment was conducted to determine the expression profile of ghrelin during post-feeding and fasting status of the brain and gut. The results revealed a significant postprandial decrease in ghrelin mRNA expression in the gut 6h post-feeding (hpf) and brain (1.5 and 9hpf) compared to an unfed control group, indicating that food intake and processing affect the regulation of expression of ghrelin in S. prenanti. The constructed recombinant plasmid pMD-19T-ghrelin was transformed to Escherichia coli BL21 and induced with IPTG, and the expressed product was identified by SDS-PAGE. The prokaryotic expression vector for ghrelin was constructed successfully, and fusion protein was expressed in E. coli BL21, which laid the foundation for the further study on the function of this protein and its mechanism. Overall, our results provide evidence for a highly conserved structure and biological actions of ghrelin in S. prenanti. Further studies are required to identify the tissue specific functions of ghrelin in S. prenanti.
Keywords: Appetite; Food intake; Ghrelin; Prokaryotic expression; Schizothorax prenanti.
© 2013.