Multimers are complexes of recombinant MHC-class I molecules conjugated with antigenic immunodominant peptides and labeled with fluorescent molecules or magnetic microbeads that allow the quantification and selection of virus-specific cytotoxic T-cell subpopulations. Specific T-cell receptors recognize the immunodominant peptides and bind to the multimers. Although these complexes are only recognized by CD8(+) T cells with specific T-cell receptors for the particular antigen, it has been observed that multimers can also bind non-specifically to CD8- cells, such as B-cells and monocytes. Using PBMCs from CMV-seropositive healthy donors, we analyze the tendency of Pentamer and Streptamer multimers towards non-specific interactions and describe a method to avoid this unwanted event. We find that a notable proportion of multimer-positive cells are likely to represent cross-contamination by cells lacking a TCR specific for pp65. In addition, we demonstrate that this unspecific interaction can be overcome by the pre-incubation of multimer-stained PBMCs with human AB serum, without altering their capacity to bind specifically to the CD8(+) T cell population of interest. In conclusion, in this study we characterize a novel method to abrogate TCR-independent interactions of multimers to ensure a pure and safe therapeutic product for Adoptive Immunotherapy.
Keywords: (Fc-gamma high-affinity receptor I A); (Pentamer); (Streptamer); (T cell receptor); (Tetramer); (β2-microglobulin); CMV-specific CTL; Fcgamma receptor I (FcγRI); FcγRIA; PM; Pentamers; ST; Streptamers; TCR; TM; β2m.
© 2013. Published by Elsevier B.V. All rights reserved.