Background: Retired athletes with a history of sports concussions experience cognitive and motor declines with aging, and the risk of severe neurodegenerative conditions is magnified in this population. The present study investigated the effects of aging on motor system metabolism and function in former university-level athletes who sustained their last concussion several decades prior to testing.
Methods: To test the hypothesis that age and remote concussions induce functional as well as metabolic alterations of the motor system, we used proton magnetic resonance spectroscopy to detect metabolic abnormalities in the primary motor cortex and the serial reaction time task (SRTT) to evaluate motor learning.
Results: Our results indicate that motor learning is significantly reduced in former concussed athletes relative to controls. In addition, glutamate/H2O ratio in M1 was disproportionately reduced in concussed athletes with advancing age and was found to strongly correlate with motor learning impairments.
Conclusion: Findings from this study provide evidence that the acquisition of a repeated motor sequence is compromised in the aging concussed brain and that its physiological underpinnings could implicate disproportionate reductions of M1 glutamate concentrations with advancing age.