Environmental consequences of invasive species: greenhouse gas emissions of insecticide use and the role of biological control in reducing emissions

PLoS One. 2013 Aug 20;8(8):e72293. doi: 10.1371/journal.pone.0072293. eCollection 2013.

Abstract

Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agriculture
  • Animals
  • Aphids / physiology*
  • Biological Control Agents
  • Carbon Dioxide / chemistry*
  • Coleoptera / physiology*
  • Environment
  • Glycine max / parasitology
  • Greenhouse Effect
  • Humans
  • Insect Control / methods*
  • Insecticides
  • Introduced Species*
  • Models, Statistical*
  • Population Density
  • United States

Substances

  • Biological Control Agents
  • Insecticides
  • Carbon Dioxide

Grants and funding

1. The University of Minnesota Institute on the Environment. They provided a fellowship for the corresponding author of $50,000. This will be used to cover publication charges; http://environment.umn.edu/research/residentfellows2011.html . 2. The University of Minnesota Agricultural Experiment station provides $6,000 per year to the laboratory of the corresponding author so long as the work is focused on biological control i Minnesota. This fund was used for photocopying associated with the project; http://www.maes.umn.edu/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.