Background and purpose: Mitochondrial DNA (mtDNA), a newly identified damage-associated molecular pattern, has been observed in trauma patients, however, little is known concerning the relationship between plasma mtDNA levels and concrete post-traumatic complications, particularly systemic inflammatory response syndrome (SIRS). The aim of this study is to determine whether plasma mtDNA levels are associated with injury severity and cloud predict post-traumatic SIRS in patients with acute traumatic injury.
Patients and methods: Eighty-six consecutive patients with acute traumatic injury were prospectively enrolled in this study. The plasma mtDNA concentration was measured by a real-time, quantitative PCR assay for the human ND2 gene. The study population's clinical and laboratory data were analyzed.
Results: The median plasma mtDNA was higher in trauma patients than in healthy controls (865.196 (251.042-2565.40)pg/ml vs 64.2147 (43.9049-80.6371)pg/ml, P<0.001) and was independently correlated with the ISS score (r=0.287, P<0.001). The plasma mtDNA concentration was also significantly higher in patients who developed post-traumatic SIRS than in patients who did not (1774.03 (564.870-10901.3)pg/ml vs 500.496 (145.415-1285.60)pg/ml, P<0.001). Multiple logistic regression analysis revealed that the plasma mtDNA was an independent predictors for post-traumatic SIRS (OR, 1.183 (95%CI, 1.015-1.379), P=0.032). Further ROC analysis demonstrated that a high plasma mtDNA level predicted post-traumatic SIRS with a sensitivity of 67% and a specificity of 76%, with a cut-off value of 1.3185 µg/ml being established, and the area under the ROC curves (AUC) was 0.725 (95% CI 0.613-0.837).
Conclusions: Plasma mtDNA was an independent indictor with moderate discriminative power to predict the risk of post-traumatic SIRS.