Sleep spindles are extensively studied electroencephalographic rhythms that recur periodically during non-rapid eye movement sleep and that are associated with rhythmic discharges of neurons throughout the thalamocortical system. Their occurrence thus constrains many aspects of the communication between thalamus and cortex, ranging from sensory transmission, to cortical plasticity and learning, to development and disease. I review these functional aspects in conjunction with novel findings on the cellular and molecular makeup of spindle-pacemaking circuits. A highlight in the search of roles for sleep spindles is the repeated finding that spindles correlate with memory consolidation in humans and animals. By illustrating that spindles are at the forefront understanding on how the brain might benefit from sleep rhythms, I hope to stimulate further experimentation.
Keywords: CaV3 channel; EEG; NREM sleep; burst; cyclic AMP; inhibition; learning; rhythm; sensory transmission; voltage-gated calcium channel.
© The Author(s) 2013.