New molecular studies suggested that the family Melittidae is either a paraphyletic group from which all the other bees are derived, or the sister clade to all other existing bees. Studying the historical biogeography and evolution of each major lineage within this group is a key step to understand the origin and early radiation of bees. Melitta is the largest genus of melittid bees, for which a robust molecular phylogeny and a biogeographic analysis are still lacking. Here, we derive a phylogenetic hypothesis from the sequences of seven independent DNA fragments of mitochondrial and nuclear origin. This phylogenetic hypothesis is then used to infer the evolution of the species range and of the host-plant shifts in Melitta. Our results confirmed the monophyly of Melitta, but did not recover all previously defined clades within the genus. We propose new taxa by splitting the genus in three subgenera (including two new subgenera described in the Appendix: Afromelitta subgen. nov., Plesiomelitta subgen. nov.) and describe two new species: Melitta avontuurensis sp. n. and M. richtersveldensis sp. n. Regarding the evolution of host-plant use, our analysis suggests that all species currently specialized on one plant family originated from an ancestor that was specialized on Fabaceae plants. The inferred biogeographic history for the genus supported an African origin. In concordance with previous studies identifying Africa as the geographic origin for many clades of bees, our data bring new evidence for an African origin of melittid bees.
Keywords: Africa; Bee plant interaction; Bees; Historical biogeography; Taxonomy.
Copyright © 2013 Elsevier Inc. All rights reserved.