Identification of the chelocardin biosynthetic gene cluster from Amycolatopsis sulphurea: a platform for producing novel tetracycline antibiotics

Microbiology (Reading). 2013 Dec;159(Pt 12):2524-2532. doi: 10.1099/mic.0.070995-0. Epub 2013 Sep 16.

Abstract

Tetracyclines (TCs) are medically important antibiotics from the polyketide family of natural products. Chelocardin (CHD), produced by Amycolatopsis sulphurea, is a broad-spectrum tetracyclic antibiotic with potent bacteriolytic activity against a number of Gram-positive and Gram-negative multi-resistant pathogens. CHD has an unknown mode of action that is different from TCs. It has some structural features that define it as 'atypical' and, notably, is active against tetracycline-resistant pathogens. Identification and characterization of the chelocardin biosynthetic gene cluster from A. sulphurea revealed 18 putative open reading frames including a type II polyketide synthase. Compared to typical TCs, the chd cluster contains a number of features that relate to its classification as 'atypical': an additional gene for a putative two-component cyclase/aromatase that may be responsible for the different aromatization pattern, a gene for a putative aminotransferase for C-4 with the opposite stereochemistry to TCs and a gene for a putative C-9 methylase that is a unique feature of this biosynthetic cluster within the TCs. Collectively, these enzymes deliver a molecule with different aromatization of ring C that results in an unusual planar structure of the TC backbone. This is a likely contributor to its different mode of action. In addition CHD biosynthesis is primed with acetate, unlike the TCs, which are primed with malonamate, and offers a biosynthetic engineering platform that represents a unique opportunity for efficient generation of novel tetracyclic backbones using combinatorial biosynthesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actinomycetales / genetics*
  • Actinomycetales / metabolism*
  • Anti-Bacterial Agents / biosynthesis*
  • Biosynthetic Pathways / genetics*
  • DNA, Bacterial / chemistry
  • DNA, Bacterial / genetics
  • Molecular Sequence Data
  • Multigene Family*
  • Open Reading Frames
  • Sequence Analysis, DNA
  • Tetracyclines / biosynthesis*

Substances

  • Anti-Bacterial Agents
  • DNA, Bacterial
  • Tetracyclines
  • chelocardin

Associated data

  • GENBANK/KC870000