Polyploidization has played an important role in plant evolution and is a pathway for plants to increase genetic diversification and to get higher heterosis comparing with that of diploid does. This study was undertaken to assess the genetic variation and relationships among 40 autotetraploid rice genotypes and their counterpart diploid cultivars with 99 SSR markers screened from published rice genome. The 99 SSR markers detected polymorphism among autotetraploid genotypes and revealed a total of 291 alleles with an average of 2.949 alleles per locus. Autotetraploid lines showed higher genetic diversity and significant variation in agronomic traits than diploid cultivars. Phylogenetic analysis revealed that most of autotetraploid lines were genetically different from their diploid parents, and inter-subspecific hybrids were prepared on the basis of genetic distance between parents. Inter-subspecific autotetraploid hybrids showed a higher and positive heterobeltiosis and competitive heterosis than diploid hybrids, especially for grain yield. Genetic distance appeared not to predict heterosis in diploid rice for all traits; however, it showed a significant correlation with grain yield, grain length and grain length to width ratio in autotetraploid rice. This extensive research on autotetraploid heterosis and genetic diversity will be useful for the development of autotetraploid rice hybrids.
Keywords: Genetic distance; Genetic variation; Heterobeltiosis; Inter-subspecific hybrids; Polyploidy.