Background and aims: High frequency electrosurgery has a key role in the broadening application of liver surgery. Its molecular signature, i.e. the metabolites evolving from electrocauterization which may inhibit hepatic wound healing, have not been systematically studied.
Methods: Human liver samples were thus obtained during surgery before and after electrosurgical dissection and subjected to a two-stage metabolomic screening experiment (discovery sample: N = 18, replication sample: N = 20) using gas chromatography/mass spectrometry.
Results: In a set of 208 chemically defined metabolites, electrosurgical dissection lead to a distinct metabolic signature resulting in a separation in the first two dimensions of a principal components analysis. Six metabolites including glycolic acid, azelaic acid, 2-n-pentylfuran, dihydroactinidiolide, 2-butenal and n-pentanal were consistently increased after electrosurgery meeting the discovery (p<2.0 × 10(-4)) and the replication thresholds (p<3.5 × 10(-3)). Azelaic acid, a lipid peroxidation product from the fragmentation of abundant sn-2 linoleoyl residues, was most abundant and increased 8.1-fold after electrosurgical liver dissection (preplication = 1.6 × 10(-4)). The corresponding phospholipid hexadecyl azelaoyl glycerophosphocholine inhibited wound healing and tissue remodelling in scratch- and proliferation assays of hepatic stellate cells and cholangiocytes, and caused apoptosis dose-dependently in vitro, which may explain in part the tissue damage due to electrosurgery.
Conclusion: Hepatic electrosurgery generates a metabolic signature with characteristic lipid peroxidation products. Among these, azelaic acid shows a dose-dependent toxicity in liver cells and inhibits wound healing. These observations potentially pave the way for pharmacological intervention prior liver surgery to modify the metabolic response and prevent postoperative complications.