Historical warming reduced due to enhanced land carbon uptake

Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16730-5. doi: 10.1073/pnas.1314047110. Epub 2013 Sep 23.

Abstract

Previous studies have demonstrated the importance of enhanced vegetation growth under future elevated atmospheric CO2 for 21st century climate warming. Surprisingly no study has completed an analogous assessment for the historical period, during which emissions of greenhouse gases increased rapidly and land-use changes (LUC) dramatically altered terrestrial carbon sources and sinks. Using the Geophysical Fluid Dynamics Laboratory comprehensive Earth System Model ESM2G and a reconstruction of the LUC, we estimate that enhanced vegetation growth has lowered the historical atmospheric CO2 concentration by 85 ppm, avoiding an additional 0.31 ± 0.06 °C warming. We demonstrate that without enhanced vegetation growth the total residual terrestrial carbon flux (i.e., the net land flux minus LUC flux) would be a source of 65-82 Gt of carbon (GtC) to atmosphere instead of the historical residual carbon sink of 186-192 GtC, a carbon saving of 251-274 GtC.

Keywords: carbon sink; climate change; earth system modeling.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Atmosphere
  • Carbon Dioxide*
  • Carbon*
  • Global Warming*
  • Models, Theoretical*
  • Plants / metabolism

Substances

  • Carbon Dioxide
  • Carbon