Tuning electron transfer rates through molecular bridges in quantum dot sensitized oxides

Nano Lett. 2013 Nov 13;13(11):5311-5. doi: 10.1021/nl402820v. Epub 2013 Oct 10.

Abstract

Photoinduced electron transfer processes from semiconductor quantum dots (QDs) molecularly bridged to a mesoporous oxide phase are quantitatively surveyed using optical pump-terahertz probe spectroscopy. We control electron transfer rates in donor-bridge-acceptor systems by tuning the electronic coupling strength through the use of n-methylene (SH-[CH2]n-COOH) and n-phenylene (SH-[C6H4](n)-COOH) molecular bridges. Our results show that electron transfer occurs as a nonresonant quantum tunneling process with characteristic decay rates of β(n) = 0.94 ± 0.08 and β(n) = 1.25 per methylene and phenylene group, respectively, in quantitative agreement with reported conductance measurements through single molecules and self-assembled monolayers. For a given QD donor-oxide acceptor separation distance, the aromatic n-phenylene based bridges allow faster electron transfer processes when compared with n-methylene based ones. Implications of these results for QD sensitized solar cell design are discussed.

Publication types

  • Research Support, Non-U.S. Gov't