Wnt/β-catenin signaling is highly regulated and critical for intestinal epithelial development and repair; aberrant β-catenin signaling is strongly associated with colon cancer. The small GTPase Rac1 regulates β-catenin nuclear translocation and signaling. Here we tested the hypothesis that β1Pix, a Cdc42/Rac guanine nucleotide exchange factor (GEF), regulates β-catenin-dependent transcriptional activity and cell function. We report the novel observations that β1Pix binds directly to β-catenin, an action requiring both the β1Pix DH and dimerization domains but not β1Pix GEF activity. In human colon cancer cells, activation of β-catenin signaling with LiCl decreased β1Pix/β-catenin association in the cytosol and increased nuclear binding of β-catenin to β1Pix. Nuclear association of β1Pix and β-catenin was independent of Rac1 expression and activation; down- and up-regulating Rac1 expression levels did not alter nuclear β1Pix/β-catenin association. Ectopic β1Pix expression enhanced LiCl-induced β-catenin transcriptional activity. Conversely, siRNA knockdown of β1Pix attenuated both LiCl-induced β-catenin transcriptional activity and colon cancer cell proliferation. Ectopic expression of β1Pix stimulated β-catenin transcriptional activity, whereas β1PixΔ(602-611), which is unable to bind β-catenin, had no effect. Altogether, these findings suggest that β1Pix functions as a transcriptional regulator of β-catenin signaling through direct interaction with β-catenin, an action that may be functionally relevant to colon cancer biology.
Keywords: Cell Proliferation; Colon Cancer; Guanine Nucleotide Exchange Factor (GEF); Small GTPases; β-Catenin.