We report herein the glycation sites in a vaccine candidate for cholera formed by conjugation of the synthetic hexasaccharide fragment of the O-specific polysaccharide of Vibrio cholerae, serotype Ogawa, to the recombinant tetanus toxin C-fragment (rTT-Hc) carrier. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of the vaccine revealed that it is composed of a mixture of neoglycoconjugates with carbohydrate : protein ratios of 1.9 : 1, 3.0 : 1, 4.0 : 1, 4.9 : 1, 5.9 : 1, 6.9 : 1, 7.9 : 1 and 9.1 : 1. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the tryptic and GluC V8 digests allowed identification of 12 glycation sites in the carbohydrate-protein neoglycoconjugate vaccine. The glycation sites are located exclusively on lysine (Lys) residues and are listed as follows: Lys 22, Lys 61, Lys 145, Lys 239, Lys 278, Lys 318, Lys 331, Lys 353, Lys 378, Lys 389, Lys 396 and Lys 437. Based on the 3-D representation of the rTT-Hc protein, all the glycation sites correspond to lysines located at the outer surface of the protein.
Keywords: GluC V8 digestion; MALDI-TOF-MS; Trypsin digestion; nano-LC-ESI-QqTOF-MS/MS; neoglycoconjugate vaccine; recombinant tetanus toxin C-fragment (rTT-Hc).
Copyright © 2013 John Wiley & Sons, Ltd.