Settling of the biomass produced during biological treatment of wastewater is a critical and often problematic process. Filamentous bacteria content is the best-known factor affecting biomass settleability in activated sludge wastewater treatment systems, and varying biomass density has recently been shown to play an important role as well. The objective of this study was to systematically determine how filament content and biomass density combine to affect microbial biomass settling, with a focus on density variations over the range found in full-scale systems. A laboratory-scale bioreactor system was operated to produce biomass with a range of filamentous bacterium contents. Biomass density was systematically varied in samples from this system by addition of synthetic microspheres to allow separation of filament content and density effects on settleability. Fluorescent in-situ hybridization indicated that the culture was dominated by Sphaerotilus natans, a common contributor to poor settling in full-scale systems. A simple, image-based metric of filament content (filament length per floc area) was linearly correlated with the more commonly used filament length per dry biomass measurement. A non-linear, semi-empirical model of settleability as a function of filament content and density was developed and evaluated, providing a better understanding of how these two parameters combine to affect settleability. Filament content (length per dry biomass weight) was nearly linearly related to sludge volume index (SVI) values, with a slightly decreasing differential, and biomass density exhibited an asymptotic relationship with SVI. The filament content associated with bulking was shown to be a function of biomass density. The marginal effect of filament content on settleability increased with decreasing biomass density (low density biomass was more sensitive to changes in filament content than was high density biomass), indicating a synergistic relationship between these factors. Consideration of both biomass density and filament content, as by the methods and model described herein, should improve operation and troubleshooting of settling processes for biological solids.
Keywords: Activated sludge; Biomass density; Filaments; Image analysis; Settling; Sludge volume index.
Copyright © 2013 Elsevier Ltd. All rights reserved.