The prevalence rate for Fabry disease is conventionally considered to be 1 case in 40,000; however, due to increased screening accuracy, reports now suggest that prevalence is 1 case in 1,500 among male children, and it is likely that the clinical importance of the condition will increase in the future. In dialysis patients to date, prevalence rates are between 0.16 and 1.2 %. Globotriaosylsphingosine (Lyso-GL-3), which is a substrate of α-galactosidase A (α-Gal A), has surfaced as a new biomarker, and is also effective in the determination and monitoring of the effects of enzyme replacement therapy. In terms of genetic abnormalities, the E66Q mutation has recently become a topic of discussion, and although doubts have been expressed over whether or not it is the gene responsible for Fabry disease, there is still a strong possibility that it is a functional genetic polymorphism. At present, the standard treatment for Fabry disease is enzyme replacement therapy, and in order to overcome the problems involved with this, a method of producing recombinant human α-Gal A using methanol-assimilating yeast, and chemical or medicinal chaperone treatment are of current interest. Migalastat hydrochloride is known as a pharmacological chaperone, but is currently in Phase III global clinical trials. Adding saposin B to modified α-N-acetyl galactosaminidase is also under consideration as a treatment method.