Expression of ogu cytoplasmic male sterility in cybrids of Brassica napus

Theor Appl Genet. 1992 Mar;83(5):549-56. doi: 10.1007/BF00226898.

Abstract

A light and electron microscopic investigation revealed that ogu cytoplasmic male sterility (CMS) in cybrids of Brassica napus is primarily a deficiency of the tapetum and clearly time and site specific. Three patterns of ogu CMS were found, and specific conclusions drawn. First, the partially male fertile cybrid 23 was highly variable. It sometimes produced heterogeneous stamens with an endothecium formed exclusively around the fertile locules, thus delineating each microsporangium as a functional unit. The second type, including cybrids 27, 58 and 85, on the contrary, was stable and completely male sterile. In the four locules of normal length, microspores were observed to die at the vacuolate polarized stage while the tapetum disappeared prematurely through excessive vacuolization by the end of meiosis followed by a rapid autolysis during the tetrad or early free microspore stage. The subepidermal layer of the locule wall failed to form characteristic thickenings. The male-sterile stamens were completely indehiscent. At the time of anthesis they contained only collapsed empty exines adhering to each other. These cybrids, 27, 58 and 85, were closest to the ogu CMS trait of radish and seemed to be the best suited for further use in plant breeding. The third pattern was found in cybrids 77 and 118, which besides showing abortion of the microsporangia also showed a feminization of the stamens. We suggest that this feminization might be due to an alloplasmic situation associating Brassica napus nuclear genes with the mitochondrial DNA of radish.