HLA-G molecule has well-recognized tolerogenic properties, and the encoding gene shows lower frequency of polymorphism at the coding region but higher variability at regulatory 5' and 3' untranslated (3'UTR) regions. At least three 3'UTR polymorphic sites have been associated with HLA-G mRNA regulation, including the 14 base pair (14bp) Insertion/Deletion, +3142C-G and +3187A-G. We studied the association of polymorphic sites at 3'UTR (sequencing analysis, encompassing the 14bp Ins-Del/+3003T-C/+3010C-G/+3027C-A/+3035C-T/+3142C-G/+3187A-G/+3196C-G polymorphic sites) with plasma soluble HLA-G levels (sHLA-G, detected by ELISA) in 187 French and 153 Brazilian healthy individuals. Allele and genotype frequencies were closely similar in both populations; however, Brazilians showed a higher HLA-G 3'UTR haplotype diversity. Considering sHLA-G levels in both populations altogether, individuals presenting 14bp Del/Del showed higher levels compared to 14bpIns/Ins genotype (P <0.05); those presenting +3010C/G showed higher levels compared to the +3010C-C genotype (P< 0.05); those presenting +3027C-C showed higher levels than the +3027A-A genotype (P< 0.05); and those bearing +3035C-C showed higher levels compared to the +3035C-T (P < 0.01) and +3035T-T (P < 0.05) genotypes. The analyses of 3'UTR haplotypes showed that UTR-1 (DelTGCCCGC) was associated with higher expression of sHLA-G, whereas UTR-5 (InsTCCTGAC) and UTR-7 (InsTCATGAC) with lower expression and other UTRs (UTR-2/3/4/6) exhibited intermediate levels. Since the differential expression of HLA-G may be beneficial or harmful depending on the underlying condition, the identification of individuals genetically programmed to differentially express HLA-G may help on defining novel strategies to control the immune response against the underlying disorder.