Objectives: To address molecular mechanisms underlying obesity development, we examined patterns of critical metabolism-related hormones, adiponectin and leptin (adipokines), over childhood.
Subjects and design: Plasma adiponectin and leptin were measured in 80 Mexican-American children at birth and again at 2, 5, and 9 years from the ongoing prospective cohort followed by the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS). We used a mixture modeling approach to identify patterns in adipokine trajectories from birth to 9 years.
Results: Leptin was positively related to child body size within all ages, however adiponectin had inverse and weaker associations with BMI at 2, 5, and 9 years. Correlations between adipokine levels over the 0-2, 2-5, and 5-9-year periods increased for both leptin (r = 0.06, 0.31 and 0.62) and adiponectin (r = 0.25, 0.41 and 0.46). Our mixture modeling approach identified three trajectory clusters for both leptin (1L [slowly-rising], 2L [rapidly-rising], and 3L [stable]) and adiponectin (1A [steep-dropping and rebounding], 2A [moderately-dropping], and 3A [stable]). While leptin groups were most separated over the 2-9-year period, adiponectin trajectories displayed greatest heterogeneity from birth to 2 years. Children in the rapidly-rising 2L group had highest BMI and waist circumference at 9 years. Further, children with greater birth weight had increased odds of belonging to this high risk group (OR = 1.21 95% CI 1.03, 1.43, compared to stable group 3L). Children whose mothers consumed more sugar-sweetened beverages during pregnancy were at risk of being in the steep-dropping 1A group (OR = 1.08, 95% CI 1.01, 1.17, compared to stable group 3A).
Conclusion: Our results highlight developmental differences in leptin and adiponectin over the childhood period. Leptin closely reflects child body size however factors affecting adiponectin and long-term consequences of its changes over infancy need to be further explored.