ZnO seed layers were deposited onto a quartz substrate using the sol--gel method, and Al-doped ZnO (AZO) nanorod array thin films with different Al concentrations that ranged from 0 to 2.0 at. % were grown on the ZnO seed layers via the hydrothermal method. Optical parameters, including the optical band gap, the absorption coefficient, the Urbach energy, the refractive index, the dispersion parameter, and the optical conductivity, were studied to investigate the effects of Al doping on the optical properties of AZO nanorod array thin films. The optical band gaps of the ZnO and AZO nanorod array thin films were 3.206 at 0 at.%, 3.214 at 0.5 at.%, 3.226 at 1.5 at.%, and 3.268 at 2.0 at.%. The Urbach energy gradually decreased from 126 meV (0 at.%) to 70 meV (2.0 at.%) as the Al concentration was increased. The dispersion energy, the single-oscillator energy, the average oscillator wavelength, the average oscillator strength, the refractive index, and the optical conductivity of the AZO nanorod array thin films were all affected by Al doping.