Background: Oilseed germination is characterized by the degradation of storage lipids. It may proceed either via the direct action of a triacylglycerol lipase, or in certain plant species via a specific lipid body 13-lipoxygenase. For the involvement of a lipoxygenase previous results suggested that the hydroxy- or oxo-group that is being introduced into the fatty acid backbone by this lipoxygenase forms a barrier to continuous β-oxidation.
Results: This study shows however that a complete degradation of oxygenated fatty acids is possible by isolated cucumber and sunflower glyoxysomes. Interestingly, degradation is accompanied by the formation of saturated short chain acyl-CoAs with chain length between 4 and 12 carbon atoms lacking the hydroxy- or oxo-diene system of the oxygenated fatty acid substrate. The presence of these CoA esters suggests the involvement of a specific reduction of the diene system at a chain length of 12 carbon atoms including conversion of the hydroxy-group at C7.
Conclusions: To our knowledge this metabolic pathway has not been described for the degradation of polyunsaturated fatty acids so far. It may represent a new principle to degrade oxygenated fatty acid derivatives formed by lipoxygenases or chemical oxidation initiated by reactive oxygen species.