Fast axonal transport by neurons from the jellyfish Cyanea capillata

J Neurobiol. 1986 Jan;17(1):29-37. doi: 10.1002/neu.480170104.

Abstract

Neurons of the motor nerve net of Cyanea capillata were examined using video-enhanced DIC optics. A variety of organelles were visible within the axons and many were mobile. To quantify the movement organelles were divided into three classes (large, medium, and small) and the rates, direction, and types of movement displayed by the different particle types examined. The overall behavior and rates of movement of transported particles were comparable with those in axons from other species. The largest particles, mainly mitochondria were the slowest moving but were the only particles to reverse their direction of movement or to undergo interactions with other particles. The fastest movement was by the small particles, but both they and medium sized particles were transported continuously. In addition, the linear elements in these axons underwent considerable lateral movement.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Axonal Transport*
  • Biological Transport
  • Motor Neurons / physiology*
  • Organoids / physiology
  • Particle Size
  • Scyphozoa