Dystroglycanopathies form a subgroup of muscular dystrophies that arise from defects in enzymes that are implicated in the recently elucidated O-mannosylation pathway, thereby resulting in underglycosylation of α-dystroglycan. The emerging identification of additional brain proteins modified by O-mannosylation provides a broader context for interpreting the range of neurological consequences associated with dystroglycanopathies. This form of glycosylation is associated with protein mucin-like domains that present numerous serine and threonine residues as possible sites for modification. Furthermore, the O-Man glycans coexist in this region with O-GalNAc glycans (conventionally associated with such protein sequences), thus resulting in a complex glycoconjugate landscape. Sorting out the relationships between the various molecular defects in glycosylation and the modes of disease presentation, as well as the regulatory interplay among the O-Man glycans and the effects on other modes of glycosylation in the same domain, is challenging. Here we provide a perspective on chemical biology approaches employing synthetic and analytical methods to address these questions.
Keywords: alpha-dystroglycan; carbohydrates; dystroglycanopathies; glycopeptides; muscular dystrophy; protein O-mannosylation.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.