Monodisperse copper nanoparticles with high purity and antioxidation properties are synthesized quickly (only 5 min) on a large scale (multigram amounts) by a modified polyol process using slightly soluble Cu(OH)2 as the precursor, L-ascorbic acid as the reductant, and PEG-2000 as the protectant. The resulting copper nanoparticles have a size distribution of 135 ± 30 nm and do not suffer significant oxidation even after being stored for 30 days under ambient conditions. The copper nanoparticles can be well-dispersed in an oil-based ink, which can be silk-screen printed onto flexible substrates and then converted into conductive patterns after heat treatment. An optimal electrical resistivity of 15.8 μΩ cm is achieved, which is only 10 times larger than that of bulk copper. The synthesized copper nanoparticles could be considered as a cheap and effective material for printed electronics.