Niche-dependent gene expression profile of intratumoral heterogeneous ovarian cancer stem cell populations

PLoS One. 2013 Dec 17;8(12):e83651. doi: 10.1371/journal.pone.0083651. eCollection 2013.

Abstract

Intratumoral heterogeneity challenges existing paradigms for anti-cancer therapy. We have previously demonstrated that the human embryonic stem cells (hESC)-derived cellular microenvironment in immunocompromised mice, enables functional distinction of heterogeneous tumor cells, including cells which do not grow into a tumor in a conventional direct tumor xenograft platform. We have identified and characterized six cancer cell subpopulations each clonally expanded from a single cell, derived from human ovarian clear cell carcinoma of a single tumor, to demonstrate striking intratumoral phenotypic heterogeneity that is dynamically dependent on the tumor growth microenvironment. These cancer cell subpopulations, characterized as cancer stem cell subpopulations, faithfully recapitulate the full spectrum of histological phenotypic heterogeneity known for human ovarian clear cell carcinoma. Each of the six subpopulations displays a different level of morphologic and tumorigenic differentiation wherein growth in the hESC-derived microenvironment favors growth of CD44+/aldehyde dehydrogenase positive pockets of self-renewing cells that sustain tumor growth through a process of tumorigenic differentiation into CD44-/aldehyde dehydrogenase negative derivatives. Strikingly, these derivative cells display microenvironment-dependent plasticity with the capacity to restore self-renewal markers and CD44 expression. In the current study, we delineate the distinct gene expression and epigenetic profiles of two such subpopulations, representing extremes of phenotypic heterogeneity in terms of niche-dependent self-renewal and tumorigenic differentiation. By combining Gene Set Enrichment, Gene Ontology and Pathway-focused array analyses with methylation status, we propose a suite of robust differences in tumor self-renewal and differentiation pathways that underlie the striking intratumoral phenotypic heterogeneity which characterize this and other solid tumor malignancies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma, Clear Cell / genetics*
  • Adenocarcinoma, Clear Cell / pathology*
  • Animals
  • Cells, Cultured
  • Female
  • Humans
  • Mice
  • Mice, SCID
  • Microarray Analysis
  • Middle Aged
  • Neoplastic Stem Cells / metabolism*
  • Neoplastic Stem Cells / pathology*
  • Ovarian Neoplasms / genetics*
  • Ovarian Neoplasms / pathology*
  • Stem Cell Niche / genetics*
  • Transcriptome

Grants and funding

Finnancial support for this research was provided by the Daniel M. Soref Charitable Trust, the Skirball Foundation and by a research grant from the Israel Science Foundation (grant No. 453/06MT and grant No. 62/10 MT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.