Objectives: To determine whether a nuclear magnetic resonance-based metabolomics approach can be useful for the early diagnosis and prognosis of septic shock in ICUs.
Design: Laboratory-based study.
Setting: University research laboratory.
Subjects: Serum samples from septic shock patients and ICU controls (ICU patients with systemic inflammatory response syndrome but not suspected of having an infection) were collected within 24 hours of admittance to the ICU.
Interventions: None.
Measurements and main results: H nuclear magnetic resonance spectra of septic shock and ICU control samples were analyzed and quantified using a targeted profiling approach. By applying multivariate statistical analysis (e.g., orthogonal partial least squares discriminant analysis), we were able to distinguish the patient groups and detect specific metabolic patterns. Some of the metabolites were found to have a significant impact on the separation between septic shock and control samples. These metabolites could be interpreted in terms of a biological human response to septic shock and they might serve as a biomarker pattern for septic shock in ICUs. Additionally, nuclear magnetic resonance-based metabolomics was evaluated in order to detect metabolic variation between septic shock survivors and nonsurvivors and to predict patient outcome. The area under the receiver operating characteristic curve indicated an excellent predictive ability for the constructed orthogonal partial least squares discriminant analysis models (septic shock vs ICU controls: area under the receiver operating characteristic curve = 0.98; nonsurvivors vs survivors: area under the receiver operating characteristic curve = 1).
Conclusions: Our results indicate that nuclear magnetic resonance-based metabolic profiling could be used for diagnosis and mortality prediction of septic shock in the ICU.