Agent-based station for on-line diagnostics by self-adaptive laser Doppler vibrometry

Rev Sci Instrum. 2013 Dec;84(12):121703. doi: 10.1063/1.4845475.

Abstract

A self-adaptive diagnostic system based on laser vibrometry is proposed for quality control of mechanical defects by vibration testing; it is developed for appliances at the end of an assembly line, but its characteristics are generally suited for testing most types of electromechanical products. It consists of a laser Doppler vibrometer, equipped with scanning mirrors and a camera, which implements self-adaptive bahaviour for optimizing the measurement. The system is conceived as a Quality Control Agent (QCA) and it is part of a Multi Agent System that supervises all the production line. The QCA behaviour is defined so to minimize measurement uncertainty during the on-line tests and to compensate target mis-positioning under guidance of a vision system. Best measurement conditions are reached by maximizing the amplitude of the optical Doppler beat signal (signal quality) and consequently minimize uncertainty. In this paper, the optimization strategy for measurement enhancement achieved by the down-hill algorithm (Nelder-Mead algorithm) and its effect on signal quality improvement is discussed. Tests on a washing machine in controlled operating conditions allow to evaluate the efficacy of the method; significant reduction of noise on vibration velocity spectra is observed. Results from on-line tests are presented, which demonstrate the potential of the system for industrial quality control.