A study of early afterdepolarizations in a model for human ventricular tissue

PLoS One. 2014 Jan 10;9(1):e84595. doi: 10.1371/journal.pone.0084595. eCollection 2014.

Abstract

Sudden cardiac death is often caused by cardiac arrhythmias. Recently, special attention has been given to a certain arrhythmogenic condition, the long-QT syndrome, which occurs as a result of genetic mutations or drug toxicity. The underlying mechanisms of arrhythmias, caused by the long-QT syndrome, are not fully understood. However, arrhythmias are often connected to special excitations of cardiac cells, called early afterdepolarizations (EADs), which are depolarizations during the repolarizing phase of the action potential. So far, EADs have been studied mainly in isolated cardiac cells. However, the question on how EADs at the single-cell level can result in fibrillation at the tissue level, especially in human cell models, has not been widely studied yet. In this paper, we study wave patterns that result from single-cell EAD dynamics in a mathematical model for human ventricular cardiac tissue. We induce EADs by modeling experimental conditions which have been shown to evoke EADs at a single-cell level: by an increase of L-type Ca currents and a decrease of the delayed rectifier potassium currents. We show that, at the tissue level and depending on these parameters, three types of abnormal wave patterns emerge. We classify them into two types of spiral fibrillation and one type of oscillatory dynamics. Moreover, we find that the emergent wave patterns can be driven by calcium or sodium currents and we find phase waves in the oscillatory excitation regime. From our simulations we predict that arrhythmias caused by EADs can occur during normal wave propagation and do not require tissue heterogeneities. Experimental verification of our results is possible for experiments at the cell-culture level, where EADs can be induced by an increase of the L-type calcium conductance and by the application of I[Formula: see text] blockers, and the properties of the emergent patterns can be studied by optical mapping of the voltage and calcium.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials*
  • Algorithms
  • Arrhythmias, Cardiac*
  • Brugada Syndrome
  • Cardiac Conduction System Disease
  • Electrocardiography
  • Fourier Analysis
  • Heart Conduction System / abnormalities*
  • Heart Ventricles / physiopathology*
  • Humans
  • Models, Cardiovascular
  • Models, Theoretical*

Grants and funding

N.∼Vandersickel and I. Kazbanov are supported by the Research-Foundation Flanders (FWO Vlaanderen). The computational resources (STEVIN Supercomputer Infrastructure) and services used in this work were kindly provided by Ghent University, the Flemish Supercomputer Center (VSC), the Hercules Foundation and the Flemish Government – department EWI. R. Pandit acknowledges support from the research grants from the Department of Science and Technology (DST), India, the University Grants Commission (UGC), India, and the Robert Bosch Centre for Cyber Physical Systems (IISc). AV Panfilov also acknowledges the support of the Research-Foundation Flanders (FWO). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.