Peptides from the COOH-terminal extension of cysteine proteinase B from Leishmania (Leishmania) amazonensis (cyspep) can modulate immune responses in vertebrate hosts. With this hypothesis as base, we used the online analysis tool SYFPEITHI to predict seven epitopes from this region with potential to bind H2 proteins. We performed proliferation tests and quantified reactive T lymphocytes applying a cytometry analysis, using samples from draining lymph node of lesions from L. (L.) amazonensis-infected mice. To define reactivity of T cells, we used complexes of DimerX (H2 D(b):Ig and H2 L(d):Ig) and the putative epitopes. Additionally, we applied surface plasmon resonance to verify real time interactions between the putative epitopes and DimerX proteins. Five peptides induced blastogenesis in BALB/c cells, while only two presented the same property in C57BL/6 mouse cells. In addition, our data indicate the existence of CD8+ T lymphocyte populations able to recognize each tested peptide in both murine strains. We observed an overlapping of results between the peptides that induced lymphocyte proliferation and those capable of binding to the DimerX in the surface plasmon resonance assays thus indicating that using these recombinant proteins in biosensing analyses is a promising tool to study real time molecular interactions in the context of major histocompatibility complex epitopes. The data gathered in this study reinforce the hypothesis that cyspep-derived peptides are important factors in the murine host infection by L. (L.) amazonensis.
Keywords: DimerX; H2 Db; H2 Ld; Leishmania (Leishmania) amazonensis; T lymphocytes epitope; cysteine-proteinase B; proteinases; surface plasmon resonance.
Copyright © 2014 John Wiley & Sons, Ltd.