Background and aims: Our previous study indicated that hepatic bile acids (BAs) may have deposited and stimulated the pathogenesis of a high fat-cholesterol (HFC) diet-induced fibrotic steatohepatitis in stroke-prone spontaneously hypertensive 5/Dmcr rats, based on dysregulated BA homeostasis pathways. We aimed to further characterize BA profiles in liver and evaluate their relationships to liver injury using this model.
Methods: Hepatic 21 BA levels were determined by ultra-performance liquid chromatography-tandem mass spectrometry, and their correlations with macrovesicular steatosis score, serum alanine aminotransferase (ALT) level and quantified fibrotic area were assessed using Spearman and Pearson correlations.
Results: Compared to control, BAs highly accumulated in HFC-fed rat liver at 2 weeks: cholic acid (CA), deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) were major species, thereafter, levels of CA and DCA declined, but CDCA species persistently increased, which induced a decrease in total CA/total CDCA ratio at 8 and 14 weeks. CDCA species positively, while total CA/total CDCA negatively, correlated with macrovesicular steatosis score, serum ALT and quantified fibrotic area. Unlike control, total ursodeoxycholic acid was minor in HFC-fed rat liver, and inversely correlated to aforementioned indicators of liver injury; total glyco-BAs, rather than tauro-BAs, were predominant in HFC-fed rat liver, and positively correlated with macrovesicular steatosis score. Moreover, its ratio to total tauro-BAs positively correlated with each parameter of liver injury, while inverse associations were detected for total tauro-BAs.
Conclusions: Hepatic BA accumulation may potentiate liver disease. CDCA and glyco-BAs play a more important role in the pathogenesis of fibrotic steatohepatitis.