Individuals born prematurely are at risk for developmental delay, and converging data suggest alterations in neural networks in the developing preterm brain. Nevertheless, those critical period processes such as cerebral lateralization that underlie these findings remain largely unexplored. To test the hypothesis that preterm birth alters the fundamental program of corticogenesis in the developing brain, we interrogated cerebral lateralization at rest in very prematurely born participants and term controls at young adulthood. Employing a novel, voxel-based measure of functional connectivity, these data demonstrate for the first time that cerebral lateralization of functional connectivity in right hemisphere language homologs is altered for very preterm participants. Very preterm participants with no evidence for severe brain injury exhibited a significant decrease in right hemisphere lateralization in the right parietal and temporal lobes in this data driven analysis. Further, for the very preterm participants, but not the term participants, these fundamental alterations in the cerebral lateralization for language significantly correlate with language scores. These findings provide evidence that cerebral asymmetry is both plastic and experiential, and suggest the need for further study of underlying environmental factors responsible for these changes.
Keywords: connectivity lateralization; cross-hemisphere connectivity; functional MRI; preterm; resting state.
© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.